The wave equation

The wave equation with zero ends boundary conditions models the motion of a (perfectly elastic) guitar string of length L:

$$\begin{cases} \alpha^2 \frac{\partial^2 w(x,t)}{\partial x^2} = \frac{\partial^2 w(x,t)}{\partial t^2} \\ w(0,t) = w(L,t) = 0. \end{cases}$$

Here w(x,t) denotes the displacement from rest of a point x on the string at time t. The initial displacement f(x) and initial velocity g(x) at specified by the equations

$$w(x, 0) = f(x), w_t(x, 0) = g(x).$$

Method:

• Find the sine series of f(x) and g(x):

$$f(x) \sim \sum_{n=1}^{\infty} b_n(f) \sin(\frac{n\pi x}{L}), \qquad g(x) \sim \sum_{n=1}^{\infty} b_n(g) \sin(\frac{n\pi x}{L}).$$

• The solution is

$$w(x,t) = \sum_{n=1}^{\infty} (b_n(f)\cos(\frac{\alpha n\pi t}{L}) + \frac{Lb_n(g)}{n\pi\alpha}\sin(\frac{\alpha n\pi t}{L}))\sin(\frac{n\pi x}{L}).$$

Example: Let $\alpha = 1$, let

$$f(x) = \begin{cases} -1, & 0 \le t \le \pi/2, \\ 2, & \pi/2 < t < \pi. \end{cases}$$

and let g(x) = 0. Then $L = \pi$, $b_n(g) = 0$, and

$$b_n(f) = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx = -2 \frac{2 \cos(n\pi) - 3 \cos(1/2 n\pi) + 1}{n}.$$

Thus

$$f(x) \sim b_1(f)\sin(x) + b_2(f)\sin(2x) + \dots = \frac{2}{\pi}\sin(x) - \frac{6}{\pi}\sin(2x) + \frac{2}{3\pi}\sin(3x) + \dots$$

The function f(x), and some of the partial sums of its sine series, looks like

Figure 1: f(x) and two sine series approximations.

As you can see, taking more and more terms gives functions which better and better approximate f(x).

The solution to the wave equation, therefore, is

$$w(x,t) = \sum_{n=1}^{\infty} (b_n(f)\cos(\frac{n\pi t}{L}) + \frac{Lb_n(g)}{n\pi}\sin(\frac{n\pi t}{L}))\sin(\frac{n\pi x}{L}).$$

Taking only the first 30 terms of this series, the graph of the solution at t = 0, t = 0.5, looks approximately like:

Figure 2: f(x), and u(x, 0), u(x, .5) using 30 terms of the sine series.